Centralizers of p-groups in groups of characteristic 2, p-type

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

finite $p$-groups and centralizers of non-cyclic abelian subgroups

a $p$-group $g$ is called a $mathcal{cac}$-$p$-group if $c_g(h)/h$ is ‎cyclic for every non-cyclic abelian subgroup $h$ in $g$ with $hnleq‎ ‎z(g)$‎. ‎in this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{cac}$-$p$-groups‎.

متن کامل

Component Groups of Unipotent Centralizers in Good Characteristic

Let G be a connected, reductive group over an algebraically closed field of good characteristic. For u ∈ G unipotent, we describe the conjugacy classes in the component group A(u) of the centralizer of u. Our results extend work of the second author done for simple, adjoint G over the complex numbers. When G is simple and adjoint, the previous work of the second author makes our description com...

متن کامل

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

2-quasirecognizability of the simple groups B_n(p) and C_n(p) by prime graph

Let G be a finite group and let $GK(G)$ be the prime graph of G. We assume that $n$ is an odd number. In this paper, we show that if $GK(G)=GK(B_n(p))$, where $ngeq 9$ and $pin {3,5,7}$, then G has a unique nonabelian composition factor isomorphic to $B_n(p)$ or $C_n(p)$ . As consequences of our result, $B_n(p)$ is quasirecognizable by its spectrum and also by a new proof, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1975

ISSN: 0021-8693

DOI: 10.1016/0021-8693(75)90084-8